Still oxides run deep: studying redox transformations involving Fe and Mn oxides using selective isotope techniques
نویسنده
چکیده
Reactions of aqueous Fe(II) with Fe and Mn oxides influence heavy metal mobility, transformation of trace organics, and important elemental cycles as Fe precipitates form or dissolve, and as electrons move between aqueous and solid phases. Our objective was to characterize reactions of Fe(II) with important metal oxides, using a suite of complementary tools to investigate the extent and underlying mechanisms of Fe(II)-metal oxide redox activity. Nanoscale materials (1-100 nm) may have fundamentally different surface or electronic properties than larger solids. Goethite was synthesized with primary particle dimensions above or below the nanoscale. Despite large differences in particle surface area, goethite nanorods and microrods had similar net Fe(II) sorption and electron transfer properties. Experimental evidence suggested particle aggregation resulted in particle complexes of a similar size, meaning considerations of available reactive surface area could explain our results. Kinetics and extent of Fe(II)-Fe(III) redox reactions between aqueous Fe(II) and goethite were examined using a stable isotope tracer approach. Aqueous Fe(II) that had been enriched in 57 Fe was mixed with isotopically-normal goethite. Convergence of Fe isotope ratios in aqueous and solid phases to values predicted by complete Fe atom exchange provided evidence that all goethite Fe(III) atoms could eventually react with Fe(II), despite no evidence for complete atom exchange from bulk measurements of the aqueous or solid phase. Fe isotope data at different experimental conditions was combined with theoretical considerations governing electron transfer in goethite to provide evidence for redox-driven atom exchange involving bulk conduction of electrons between spatially distinct Fe(II) sorption and release sites. Procedures for stable Fe isotope tracer studies have been adapted to investigate redox transformations of magnetite solids with different divalent cation content.
منابع مشابه
Fe(II) reduction of pyrolusite (β-MnO2) and secondary mineral evolution
Iron (Fe) and manganese (Mn) are the two most common redox-active elements in the Earth's crust and are well known to influence mineral formation and dissolution, trace metal sequestration, and contaminant transformations in soils and sediments. Here, we characterized the reaction of aqueous Fe(II) with pyrolusite (β-MnO2) using electron microscopy, X-ray diffraction, aqueous Fe and Mn analyses...
متن کاملRedox reactions and the influence of natural Mn oxides on Cr oxidation in a contaminated site in northern Italy: evidence from Cr stable-isotopes and EPR spectroscopy
Hexavalent chromium-contaminated groundwaters and sediments in northern Italy have been studied using the Cr stable-isotope systematics and electron spin resonance spectroscopy (ESR), in order to explore redox changes and soil-groundwater interactions. The isotopic data indicate a possible Cr(VI) source released into the environment from an industrial plant. EPR spectra on the sediments which c...
متن کاملResolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake
Vertical profiles of the dissolved and particulate (>0.45 µm) Pb, Al and Ba were determined on two occasions (14 and 22 August 1996) during summer stratification in a seasonally anoxic lake (Esthwaite Water, UK). The results were combined with contemporaneous in-situ measurements of water-column remobilization of the metals from settling particles at the base of the suboxic zone and other ancil...
متن کاملPb scavenging from a freshwater lake by Mn oxides in heterogeneous surface coating materials.
Selective extraction techniques were used to assay the importance of specific solid phases in Pb binding by heterogeneous surface coating materials (biofilms) in Cayuga Lake, NY. Hydroxylamine hydrochloride (NH(2)OH.HC1) was used to extract easily reducible Mn oxides, and sodium dithionite (Na(2)S(2)O(4)) was used to extract Mn and Fe oxides in two sets of biofilm samples retrieved from the lak...
متن کاملApplication of EXAFS spectroscopy to the study of abiotic redox processes in soils and sediments
The past decade has witnessed explosive development in the application of non-invasive spectroscopic techniques, and specifically of synchrotron-based EXAFS spectroscopy, to determine the local structure of poorly-crystallized solids, the crystal chemistry of substituted elements, and the sorption mechanism of metals in contact with the major contituants of soils and sediments (clays, Fe and Mn...
متن کامل